\(\require{longdiv.tex}\)
\(\require{color}\)
\(\require{polynom}\)
$$ e^{\pi i} + 1 = 0 $$
$$ J_\alpha(x) = \sum_{m=0}^\infty \frac{(-1)^m}{m! \Gamma (m + \alpha + 1)} {\left({ \frac{x}{2} }\right)}^{2m + \alpha} $$
You should see the square root of x here: $ \sqrt{x} $ and the square root of y here: $ \sqrt{y} .$
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are : $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
The quadratic formula should appear here: $$ x = {-b \pm \sqrt{b^2-4ac} \over 2a} $$
The cubic equation should appear here: $$ ax^3+bx^2+cx+d=0 $$
$$ \sqrt[5]{\left(\frac{258}{369}\right)} $$
$$ 81 \div 9 = 9 $$
$$ 9 \times 9 = 81 $$